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It is well known that under certain conditions of operation of magnetohydrodynamic 

machines a significant influence is exerted by the processes taking place in the electrode 

layers, which cannot be described by the usual equations of magnetohydrodynamics. In 

spite of the microscopic thickness of the electrode layer regions, the electric potential 

undergoes a finite change in them, sometimes amounting to a significant fraction of the 

induced or imposed potential differences. Accordingly, the results of calculation of elec- 

tric fields in channels without taking into account the electrode layer effects* can, in 

certain cases, lead to incorrect prediction of the performance of magnetohydrodynamic 

machines. A very complete theoretical study of electrode layer process was carried out 

by Liubimov [2 to 61. On the basis of these papers, and of other experimental work, the 

drop of potential 6rp” in the electrode layer can, in a number of cases, be successfully 

related to the characteristics of the electrode and the gasdynamic and electrical para- 

meters on the surface of the electrode layer. These results can be used for studying the 

influence of the electrode layer processes on threedimensional effects in channels. The 

present paper is devoted to the formulation of the relevant problems and to the solution of 

some of them. 

1. As follows from the theory of the electrode layer, its thickness is negligibly small 

+I& 

in comparison with the dimensions of the system (in many 

cases it is less than the length of the path of charged particles). 

This permits the conditions on the surface of the electrode 

-x0 layer to be satisfied at the surface of the electrode and allows 

us to assume that in passing through the layer the normal 

w 
component of elect tic current density jr,” is conserved. We shall 

moreover assume that the function &I” = f (ino, . . .), de- 

fining the dependence of the electrode layer potential drop on 

FIG. 1 the other parameters, is known either from experiment, or from 

* An approximate method of making such a calculation is describes in ref. [l]. 
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theoretical consideration of the electrode layer. It will be assumed that this function does 

not depend explicitly upon the strength of the magnetic field Ba. The precise knowledge 

of this dependence together with the usual boundary conditions for the electrical quantities 

(j,o = 0 on the nonconducting segments of the walls of the channel, Cp” = const along the 

electrode) and the appropriate boundary conditions for the gasdynamic quantities, makes it 

possible in a number of cases to complete the system of the magnetogasdyuamic equations 

for th% region outside the electrode layers. 

Let us suppose that the walls of the channel are nonconducting, except for the seg- 

ments K+ and R’, the distribution of potential and the electrode layer drop of potential 

along which, are given by the functions (pQ+, 9”’ and &‘*, 4”’ respectively (fig. 1.) 

Assuming the process to be steady, and the current density when 1 X' 1 -^)I 00 to be equal 

to zero, and using the assumption that the thickness of the electrode layer is small, we 

obtain the equation. 
“ ? 7 

SIS j”E”&l = - sss i, div qf’j” dD = 
, 

($‘+ -I- W’+) i,” dr, - (qf- + &p”-) j,” dr, (E”= - Vqf’) (I*? 

Here the volume integral extends over the region of the channel outside the electrode 

layers, the double intergrafs are taken over the surfaces of the segments F? and KS, E? 

is the electric field vector and n is the outer normal. On the other hand we have 

j”= o(E”+ $v” x B”) (1.2) 

Equation (1,2), where a is the electrical conductivity, Vo is the velocity vector and 

c is the velocity of light in uocuo, is the simplest expression of Ohm’s Law, Q aud A 

are the Joule dissipation and the work of the medium (per unit time) in overcoming the 

resistance of the magnetic field, respectively. Combining (1.1) and (1.3) we find that 

(1.4) 

If K+ and K- are connected, then 

8 up’+ j,” dr, + ss q?-j,” dr, =: J” (t-q”’ - rp”) 
+ K- 

(1.5) 

In agreement with (1.4) in the generating mode the work A is convsrted into ~~~~~ 

dissipation, electrical energy used up on the external load, and the losses in the elec- 

trode layers. The efficiency of such au apparatus is determined from the formula 

q* = Jo fCPQ4&- cp”-1 (1.6) 
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If the device is used as an accelerator, then the electrical energy supplied to the apparatus 
_ 3” (cp”’ - Q”-) is equal to the Joule dissipation, the losses in the electrode layers 

and the work - A of the electromagnetic forces in accelerating the gas. The efficiency of 

the apparatus is therefore equal to 

** z 
-A 

rl - J” (fq”+ - (p”-) (1.7) 

We note that the relation (1.4) remains valid even in presence of anisotropic COP 
ductivity in which case a vector collinear to j* X B” is added to the right-hand side of 
(1.2). The formulae (1.6) and (1.7) are easily generalised to the case of an arbitrary 
number of electrodes. 

2. The complete solution of the problem of three-dimensional magnetogasdynamic flow 

in a channel in the majority of cases encounters formidable computational difficulties. 

However under certain conditions the calculation of the electric field in the channel cnn 

be carried out for specific values of the gasdynamic quantities [I]. In this approximation 

tip has to be taken as a function of the electrical parameters only. The boundary problem 

of the distribution of the current in the channel, with isotropic conductivity and small 

magnetic Reynolds numbers, is formulated in this approximation as follows: 

jo=a-~r$‘$+ v”xBO 
( ) 

, div j” = 0 

i n o = 0 on the dielectrics, 9” = fp”* $- acp”* (ino) on the electrodes (2.1) 

rp”‘-$- zzz Jo& 

In (2.1) j* and qp” are the un~owns and qQf---qo- = j% . The last integral con- 

dition is used to determine the potential difference @‘f _ VQ- in the generating mode, 

across the external load R, 

In a number of cases the electrode drop of potential is small in comparison with the 

applied or induced difference of potentials*, and the equations (2.1) can be linearised in 

the neighborhood of the solution with &I”- 0. Assuming** that B" = (0, 0, - E" ho)), 

VP = (0, 0,V" (P)), TV = const, we obtain the equations in the zero and first approxi- 

mation. Let us pass to dimensionless variables by means of the formulae 

V”== VT, B”= B*B, x0 = hx, y” = hy 

Assuming @ = ES (i n , where E = COnSt = o (I), .S =z 0 (I), and representing ) 

the currents and the potential in form of series 

~=%+E~P1+ . . . . ~*=++E(p;i:+ . . . . 

jx = jm + 8jxl + . . ., ju z= iv0 + 8jl,l + . . ., s(in) = s(inO)+ . . . 
(2.3) 

we find, from the system (2.1) 

* This condition for exampIe is fulfilled for large scale channels when the flow of gas 
rest&s in generation of electrical energy. 

**t7 to91 investigated the lon~tudinal boundary effect without the electrode layers for 

the values of cr, B” and .uo given above. 
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i,, = 0 on the dielectrics, cpo = cpo” on the electrodes 

‘po+ - ipo- = RaJo (Jo== j+inodl) 
aql i,, = - ar t 

8% 
i,, = - ay , LNh=O 

inI = 0 on the dielectrics, C~I = Cpt’ $ S* (ia,) on the electrodes 

0: - cpt- = Red, (Ix= ~~i~~~~) 
(2.5) 

In (2.2) the quantities V*‘*, B* and h are the characteristic velocity, characteristic 

magnetic field intensity and characteristic linear size respectively and 1 is the dimension- 

less length along K +. The system (2.4) defines the electric current without the electrode 

layer drop of potential and the first order corrections are found from system (2.5). The last 

relations in the systems (2.4) and (2.5) are used to determine the inducedpotential differ- 

ence in the generator mode. If, on the other hand the potential difference is given, then, 

after the solution of the problem has been obtained, it can be used to determine the 

external load. 

3. The quantity 69 is determined from the volt-ampere characteristics obtained in the 

problem of current transmission between the electrodes *. In the general case the function 

Q (in) may be fairly complex, and that is inconvenient in obtaining the solution of 

system (2.1). Under certain conditions, however, 6~ can be represented by simple func- 

tions. According to f2 to 6] it can be assumed, that on the segment of the electrode 

with j, <0 (the electrons move from the stream into the electrode), 69 = 0 with a high 

degree of accuracy. If j, > 0 and the surface of the electrode is a good ion absorber (e.g. 

graphite) then at low electrode temperatures I!@ - ja; if however the ions are reflected 

from the surface in any appreciable degree (e.g. off a tungsten electrode), then starting 

from a certain current density, 6rp = const. For large currents the latter condition is 

probably true for most materials. The fact that the behaviour of the function &p along the 

surface of the electrode depends on the sign of j, greatly complicates the solution of the 

system (2.1). Mathematically this is connected with the change of form of the boundary 

condition in passing through an unknown point of the boundary. 

4. Let us derive the simplest solution of system (2.1). We shall consider a plane 

channel 1~‘) < 00, / i/Q j < ‘,/.& with electrodes placed symetrically 1 X0 1 <A, 

/ y” I = * ‘/t h. Let (7 = const, v* = (VQ (y”), 0, O), B”=(O,O,-_B*), g*=coust > 0. 

We shall assume that 6~“= const > 0 and 6q” = 0 on the electrodes with j,” > 0 and j,e < 0 re; 

pectively (fig. 2.) It is easy to see that the solution of system (2.1) is obtained from the 

solution [7] of the corresponding problem with &$’ EE 0, if the electromotive force 

8’ = C-'RG, where G is the volume of the fluid expelled, is replaced with 8 - &Q” 

* In obtaining the volt-ampere characteristics a uniform distribution of the current between 

the electrodes should be aimed at. Then 9’” ’ - cp”- = -&@* + &q~- + i”r t where r is 

the internal resistance. 
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(4.1) 

In (4.1),K (k) is the complete elliptic integral of the first kind. The graph of the func- 

tion U* is given in [8]. Wh en 2Nh > 0.3, we have [9 and 101 

a*=2hJh+2In2/n 
By (4.1) the electrode potential drop decreases the output current and the efficiency 

by the factor (1 - 6cp ). 

It should be noted that if the electrodes had different lengths and were displaced with 

respect to each other, then the characteristics of the device would be given by formulas 

(4.1) in which CL* would have to be replaced by the quantity @ defined by the formula (1.6) 

in [ll] 

FIG. 2 FIG. 3 

S. Let us study the influence of the electrode potential drop on the effects caused by 

the non-uniformity of the magnetic field with respect to the length of the channel and trans- 

verse velocity gradient. Let us consider a channel of constant width h with electrodes 

BC and NM of length 2A (fig. 3). Disregarding the assumption made in the derivation of the 

systems (2.4) and (2.5) we shall assume, that on the lines NB the condition jz = 0 is fulfilled. 

This is possible if the conductivity in the electrode zone is regulated by the introduction, 

through the channel wall, of an easily ionised substance in the section NB while to the 

right of MC, the conductivity is equal to zero as a result of cooling of the fluid. The systems 

(2.4) and (2.5) are rewritten in the form 

j,, -= 0 on NB, MC; Cp= Cpo+ on NM; cp = ‘PO- on BC 
(5.1) n 

cp,+ - ‘p,,- = l&J, 
( s 
Jo = 2h jyo(5, 1)&r, a -=h 

0 

(5.2) 

ix, = 0 on NB, MC; 'pi= Cpl+ + So' on NM; Cpl = Cp,-+ So- on BC 

cp1+ - cp1- = Rd, [ JI = 5 iv1 (5, 1) dx, so+ = S+ [ i,, (x, I)], so- = s- I- i,, (5, O)]) 
0 
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We note that the systems (5.)) and (5.2) also define the electric field in the trans- 

verse cross-section of the channel with the electrodes NM and BC and the nonconducting 

sides NB and MC, when vQ := (0, 0, - T/‘” (IT+)), B” =I (- B*, 0, 0). In this 

case the nonuniformity of the current is controlled by the decrease in the velocity near the 

side walls NB and MC, 

Solution of the systems (5.1) and (5.2) is given by the formulas (the potential on the 

electrode BC is assumed to be equal to zero) 

(5.3) 

a 

(pl+ = - * J P 
1 +!sRa’ ‘==--~a ( s p = (so+ - so-) dr (5.4 

0 
The efficiency q* when first two approximations are taken into account, is equal to 

ri * = rlo* tf+ 8q) 

VI*= (i$!&~* ’ Q = 68 
L. [v (4 + aRa) - aRpL] - $ 

(5.5) 

S*= jf%, 

Q 

53 = t;a (1 + aRa) - bJW, v = ‘f (s&- SJdZ 
s 

0 0 

Let us consider some particular cases, Let fm 1. Assuming that &+ = con& = 8, 

&I- = 0, we obtain 

j/o, - l--e JtJ== I-+-oRa’ 
GRU (1 -e) 

q*= i-f-oRa (5.6) 

These formulas constructed according to the first two approximations, give the com- 

plete solution of the problem, sines the approximations of higher order are identically 

equal to zero. 

If &rp+ = ejv, 6~~ = 0, th en, constructing the solutions for all approximations 

we find that 

(5.7) 

j, = 0, ix = (-ilk 
(1 + oRa)'+' ’ 

Formulas (5.6) are valid when 8 < 1. The series in (5.7) converge when 

8 < 1 -/- &a, but the finite expressions in (5.7) for jr and ‘I* are valid for any E (it can 
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easily be confirmed by solving the initial systems of equations directly), 

The simplicity of the corresponding solutions is explained by the absence of the 

zones of reverse currents at the electrodes. 

Let us now suppose that there are zones of reverse current at the electrodes (f S#E 1). 

S$ and ST are given by the formulas 

The relations (5.8) correspond to the conditions @ -js and & E 0 on the 

segments of the electrode with j, > 0 and j, < 0 respectively (fig. 4). It is easy to see that 

so+ - s*- = ]urJ is also true. The quantity q is now equal to 

Q = 
@JR)* am - &$ 

(ii_ CSRU) (olina + &A) 
fm = a52 - ($9 (5.9) 

The function q (of?) increases monotonely from q (0) = -1 to q (00) = 1 and vanishes, 

when OR = (CR), = (5, / an+. 

We should note that, according to the Cauchy- 

Boniakovski inequality m >/O where the equality sign 

applies only when fm const. For the same value of 

OR, the function Q* ((JR) reaches a maximum (fig. 

FIG. 4 FIG. 5 

Hence the electrode potential drop leads to a decrease in efficiency when OR < (d?), 
(when the boundary effect is reIatively weak), and to an increase when UR > (OR), 

(when the boundary effect is si~ific~t), The current generated and the induced potential 

difference decrease for all oR. For large oR however, the sum of the Joule and electrode 

loses decreases strongly and this leads to the increase in efficiency r)* zz Q,* (1 -j- s), 

For small oR on the other hand rl* ZSQ,* (l - E). 

Let us estimate the quantity (off), in the problem of the distribution of current in the 

transverse cross-section of the channel. We shall choose 

to represent a family of velocity profiles [LZ], and we shall assume the mean velocity with 

respect to the cross-section to be the characteristic velocity. With changing the parameters 

p from 0 to 00 the profile f(r) is continuously deformed, passing from the Poiseuille profile 

to the complete one*. For the profiles (5.10) 

* The family (5.10) represents the Hartmann profile. 
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51 52 ap (p + 2p cash' p- 3 /2 sinh =a, 2~1 = 
2fpcoshp-sinhp)’ 

When p > 1 we have (OR)& sz v?. H ence, with increasing fullness of velocity 

profile the region of variation of czR, in which the electrode potential drop decrease the 

efficiency, continuously increases. 

6. Let us obtain the solutions of the systems (2.4) and (2.51 for the channel in fig. 2 

in the case when f$ const, and consequently when the quantity j, can change its sign at ths 

electrodes. Let fbe an even function. Then, as a result of symmetry, it is sufficient to 

consider just the right-hand half of the channel x > 0, assuming that j, r 0 on the line 

FOE, The corresponding sofutian of the system f2.4) was obtained in [8]. The system (2.51 

is rewritten in the form 

@I 
1x1 = - as 7 

3% 
3!./1= -ay I Arp1=0 

jur = 0 on CD, MD; jr1 = 0 on FOE 

cp1 = ‘pl+ j- SO+ on FM, ~1 = SO- on EC, VI+ =: 2aRJl 
(6.1) 

‘/.a 

! sO + = a+ [& (2, V2)1, so- = s- I- i, (% - ‘/2)1. Jl = $ i,r c? --“/*)ds, a 1=52&/h) 

0 

Hers it is assumed that the potential of the electrode EC is equal to zero. To solve 

the problem Ist us introduce the analytic function 

3% 
2s f@ = &. 

f @I -_&- 
ay 

(2 = z f iy) 

According to the boundary conditions im w = 0 on the segment of the boundary CDM 

while on MFEC, Re w is known. Hence w can be found by means of the Keldysh-Sedov 

formula [ 131. Th e solution has the form 

(6.21 

1 
r = so+ - so- when z = 0; p+ (p) = $$$ j3- (p) = swhen z = X(P) = -ccs~-‘~ 

R 

In f6.2) the function t (11 maps conformally the half strip z > 0, i y 1 < I/% onto 

the upper haIf plane v >o (fig. 61, fmctions K fk) and cc* ‘are defined in (4.11, and the 

branches chosen for the sqnsre roots are those which are positive when t = T> 1. The 
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r, 0, E, C, D, 

FIG. 6 If the current I,, is positive along the length of the 

electrodes and it can be assumed that so- = 0, so+ = const 8 then from (6.3) we find, 

that 

(6.4) 

7. Let us find the solution of the system (2.5) for the channel 1x1 <w, 0 < y < 1 with 

infinite electrodes ND and BD (fig. 7). The corresponding solutions of the system (2.4) 

for various functions f(x) were obtained in [14-161. The boundary conditions (2.5) are 

written in the form 

!!? = 0 
8Y 

on AB, AN; ‘~1 = so+ on ND, Cpl = So- on BD 

(7.1) 
(S*f = s* [i,, (2, I)], e*- = s- [-- igo (s, 011) 

In the problem under consideration the potential difference between the electrodes is 

assumed to be kuown. If the region under study is conformally mapped on the half-strip in 

the t-plane by means of the transformation exp (-- nz> = cos t (fig. ?), then the solu- 

tion is easily constructed by Fourier’s method 

%bG v) ++i x,e"v"oos m (t=Z+iv) 
n%x1 

1 (7.2) 

J&=$ 
s 
’ s (q coS ng dz, ,y cz) = so- when 0 <r < %IE, T = coswx emm 

0 I SO+ when Van <z < x, x = JI - cos-t e-ns 

The currents J< and Jt , flowing across the segments of the electrodes BE and NF 

will be equal to 

P 

Jr- = 5 i:lP, 01 dx = ; xn sin 122, (Z = ~0s”~ e-m) 
0 n=1 

s cw 

Jl'== 
!i 
&1(x, I)dx = 2 (-f)nfl~sinnT 

0 ?3.4 

If the magnetic field does not extend sufficiently fer from the electrode zone, than 

some parts of the electrodes will have different directions of i yo. Let us choose the 

following family of model profiles jy, (x) on the electrodes: 

igo - 1-s sin-’ e-““(l,<x<m) (7.3) 

It is easy to see that ill0 (0) = - (X - I), jjo (~1 =: 1; jvo < 0 when 

0 < z < z*$ igo> 0 when 2’ < x < w, ino (X ) = 0, where JEW*= -.-ln sin n/2x. 
The segment of the electrode where ire < 0, becomes larger with the increase of X 

Caneegaently, the profiles (7.3) represent several of the characteristic peculiarities 

of the actual distribution of j 
YO 

along the electrodes. 
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Let us now suppose that the quantities s$ and ~0 are determined by the functions 

(5.8) in which j 
Y 

o is expressed by the formula (7.3) (fig. 8). In this case the coefficients 

are easily calculated and the currents 17 and 1: take the form 

I1 = 

13 = 

J1+ = $ I4 + I, - I, 

i,9 sin nT 
12 = - ;1nt+ + -$) (r = COG- 1 e-“1 

n=l 

SK: (-')n(i-~cosnnIX)sin2n~, 
m (-l)n+l sin n7 

J4 = 2 na 

n=1 n=1 
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